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Fourier transform methods initiated by Geller and Harris are applied to the calculation of optical 
properties of molecules. Tables of one-electron two-center integrals needed for the accurate computation 
of molecular absorption and optical activity are calculated by the Fourier transform method. A general 
theorem is derived which allows the angular part of the integrals to be treated by means of projection 
operators. The radial parts of the integrals are treated by the methods of Harris. The results are obtained 
in a simple closed form which avoids the usual transformation to local coordinates. The two-center 
integrals evaluated include matrix elements of the momentum operator, the dipole moment operator, 

the tensor operator x , - - ,  the quadrupole moment operator, and the angular momentum operator. 
c3x, 

These are evaluated between Is, 2s, and 2p Slater-type atomic orbitals located on different atoms. 
The results are expressed as functions of the Slater exponents and of the relative coordinates of the 
two atoms. 

Key words: Two-center one-electron integrals - Fourier transforms in MO theory - Optical 
properties 

Introduction 

In order to calculate the optical properties of molecules (including oscillator 
strengths, linear dichroism, circular dichroism, optical rotatory dispersion and 
photon scattering cross sections), from a knowledge of the molecular orbitals [ 1-6], 
one needs to evaluate matrix elements of the form: 

(M~,)v=~d3x~bs(X)ei~.x 0 ~bt(x) v = 1 , 2 , 3  (1) 
~X v 

Here g is the photon wave number, while ~ and ~t are molecular orbitals. If we 
let Xj represent the position of the jth atom in a molecule, while )~,(x -X~) re- 
presents an atomic orbital of type n localized in the jth atom, then the molecular 
orbitals can be written in the form: 

�9 ~(x) = y~ x.(x - xj) c.j,~. (2) 
n,j 
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If we expand exp(ix, x) in a Taylor series, retaining only the first two terms, 
then (1) and (2) can be combined to yield: 

where 

and 

'~ ,p,(x) (M,,,L = ~ d3xcb,(x) e i*' ,  Sx~ 

= ~,, C,,j,,sC,,j,t ((1 + ix .X  j,) {F,,,(Rj,j)},, 
n'j ' ,nj  

+ i  E ~,{r, . ,(gj.~)},~ 
p = l  

{F. ' .(Rs' j)L--. f  d~Z. ' ( x  -- X~,) ~x~  Z.(x -- Xj) 

{ r...(Rj,j)}.~ ___ .( d~xz.,(x - X~,)(x - Xy). # z,  (x - x~). 

(3) 

(4) 

(5) 

For the evaluation of oscillator strengths, only the term 

lim {(M~,,)~} = .[ d3x~b~(x ) -~  ~t(x) 
x=*-0 

(6) 

is necessary, while the terms up to first order in x are needed for the calculation 
of circular dichroism and optical rotatory dispersion. The matrix element of the 
momentum operator (6), is often converted into a matrix element of the dipole 
moment operator by means of the relation: 

.[ cl3x ,~s(x) ~ ,~,(x) - rn(E,- Es) h2 .[d3x ~s(X)xvq),(x). (7) 

However, as has been pointed out by a number of authors [7-21], who have 
concerned themselves with matrix elements of the form (4)-(6), Eq. (7) is only 
an exact relation if we are dealing with exact solutions of the Schr/Sdinger equation. 
In cases where the wave functions are only approximate, the use of (7) can lead 
to very large errors. Therefore it is of interest to evaluate matrix elements of the 
momentum operator (6) directly without converting it to the dipole moment by 
means of (7). The authors who have evaluated (6) directly do so by using an 
ellipsoidal coordinate system [-22-23]. The ellipsoidal coordinate method for 
evaluating two-center one-electron integrals is rather cumbersome, and it is 
necessary, when using this method, to transform to a local coordinate system 
oriented along the line joining the two atoms. We shall instead evaluate the matrix 
elements by means of the Fourier transform methods pioneered by Geller and 
Harris, making use of the radial integrals studied by them. The Fourier transform 
method leads to a simple analytic evaluation of all the two-center one-electron 
integrals. Besides the simple closed form of the results, the Fourier transform 
method for calculating optical properties of molecules has the great advantage 
that it avoids the transformation to local coordinates. 
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The Fourier Transform Method for Calculating Two-Center One-Electron Integrals 

Let %(k) be the Four ier  t ransform of the a tomic orbital Z.(x), so that 

)~,(x) = 5 d 3 kexp( ik  �9 x) cr (8) 
and 

~.(k) -- J (2703 ~ daxexp(  - ik .  x) Z,,(x). (9) 

Then 
Z.(x - X~) = ~ d3 kexp [ ik .  (x - Xj)] co.(k) (10) 

and 
Zn'(x - Xj,) -= ~ d 3 k' exp I lk ' .  (x - Xj.)] ct,,(k'). (11) 

Substituting (10) and (1 t) into (4), we obtain:  

(F,.,)~ = ~ d ~ z , . ( x  - X j . ) - g ~  Z,(x - X j) 

= .( d 3 x ~ d 3 k ~ d 3 k' exp I lk ' .  (x - Xj,)] c~,,(k') ~ exp I l k .  (x - x j)] an(k) 

= ~ d 3 k ~ d 3 k' exp [ - i(k' .  Xj, + k-  X~) ~,.(k') ik~ , (k )  (12) 

�9 ~ d3xexp[ i ( k  + k')- x] .  

Then, since 

we have 
d3x exp Ei(k + k'). x] = (2g) 3 3(k + k') 

(L,.)v - S d3~x.'( x - Xj,) ~--~ Z.(x- X j) 

= (2re) 3 f d 3 kexp ( ik .  R) %, ( - k )  ikv%(k ) 
where 

R=Xj,-Xj. 

In a similar way, we obtain the relations: 

(G.,,),, =- ~ d3x z, ,(x - Xf)  (x - Xj)v X,(x - Xj) 

= (27c) 3 ,( d3kexp( ik  �9 R) c t , , ( -k )  {fi,(k)}v 

1 
{fl,(k)}~ =- (2rc)3 .[ daxexp(  - i k .  x) x , z , ( x  ) 

s . , .  =_ .f d~xz . , (x  - Xy) z.(x - X)  

= (2~) 3 ~ d 3 k exp ( ik .  R) ~., ( - k )  ~,,(k) 

(T,.,),~ - I d~xz , ' (  x - X;.) (x - Xj.),-~--~ z , ( x  - xi) 

= (2n) 3 .[ d 3 k exp ( ik .  R) {ft,, ( - k ) }  u ik,,ot,(k) 

(Q,..),~ - ~ d3xz , . ( x  - X~.) ( x -  Xj.), i x -  Xj)~ z , ( x -  Xj) 

= (2~) 3 ~ dakexp( ik  �9 R) {ft , , ( -k)} u {ft,(k)},. 

where 

and 

(13) 

(14) 

(15) 

(~6) 

(17) 

(is) 

(19) 

(20) 
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Fourier Transforms of Atomic Orbitals 

In order to evaluate the Fourier transforms c~.(k) and {fl.(k)}~ defined by (8) 
and (17). we make use of the expansion: 

l 
exp ( - i k . x )=4n  ~ (--i)ljl(kr) Z Yt*(O,q~)Ytm(Ok.q~k) (21) 

l=O m= - l  

where Jl is a spherical Bessel function of order l (26). k, Ok, and ~0k are the spherical 
polar coordinates of the vector k in reciprocal space. If Z. is a Slater-type orbital 
of the form: 

. Z.im(x) = r . -  1 e x p ( -  ~r) ~m(O, q~) (22) 

then substituting (22) and (21) into (9) and making use of the orthonormality of the 
spherical harmonics, we obtain: 

~.t,.(k) = ] / (202"+x  ( -  i)' j.+ 1.,(k) ylm(Ok ' q~k) (23) 

where 

J.~ = ~ drrUj~(kr) e x p ( -  (r) .  (24) 
0 

The integrals J.~ have been studied by Geller [29, 30] and Harris [25]. They 
can be evaluated directly by inserting the explicit expression for j~(kr) and 
integrating. Alternatively, they can be generated by means of the recursion 
formulae given by Harris: 

(2vk  

(2v + 2) 
, (k ~ + ~ )  , 

(k 2 .q_ ~2) ~ +  1,v "~- (/b/-~- v ) ( ~  - -  v - -  l )  J#_ 1,v = 2 ~ J # v  
(25) 

Starting with 
1 

Jl,O - k 2 + ~2 (26) 

and using the recursion relations of Harris (25), we obtain the functions shown 
in Table 1. Substitution into (23) yields the following Fourier transforms for the 
real Slater-type orbitals up to n = 2: 

{ ~ ~ /~  (3r 2 -  k ~) 
~2, = ~-~-J -~/~ (k 2 _~ r (27) 

~2p. = - - 4 h i  (k 2 +r k " 



l 
0 (k2 + ~2) 
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Table t. 

J.~ = T dr r"jv(kr ) e -~ 
o 

2k 
(k2+~2) 2 

2~ 
(k 2 + ~2)2 

8k 2 
(k 2 + (2)3 

8k~ 
(k2q-~2) 3 

2(3~ 2 - k 2) 
(k 2 + ~2)3 

1 2 3 

48 k 3 

(k2+~2) 4 

48k2~ 
(k2+~2) 4 

8 k ( 5 ~ 2 - k  2) 
(k2+~2) 4 

24 ~((2 _ k2) 

(k2 + r 

4 / ~  
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In a similar way we can generate the functions defined by Eq. (17) 

( ~ ) 5 / 2 4 k k u  
(flls)u=--i (k2 --~ (2)  3 k 

- 4 i  {f_~5/2 k ( 5 ( 2 _ k 2 )  k. 

4~ 7/2 J" buy 6kukv } 
(G~)~  = ~ / ~  [ (k ~ + ~2)~ (k~ + r �9 

(28) 

Angular Momentum Projection Operators Acting on Tensor Functions 

Before proceeding further with the evaluat ion of the two-center  one-electron 
integrals of Eqs. (14)-(20), it is convenient  to notice the following general proper ty  
of three-dimensional  Four ie r  t ransforms:  Suppose that we have a function which 
can be expressed as a p roduc t  of a radial par t  A(k) and an angular  part  f(Ok, q~k). 
Then, f rom the expansion 

exp( ik .  R) = 4re itJz(kR) ~ Yz*(Ok, q)k) Yzm(OR, OR) (29) 
/=0  m= - I  

it follows that  

d3kexp(ik �9 R) A(k) f(Ok, Cpk ) = ~ az(R ) Oz{f(O R, cpR) } 
l=O 

where 

and 

CX3 
at(R) =- 4rci z ~ dkk2jz(kR) A(k) 

0 

l 

Or{f (OR, q0R)} -- ~ Yt,.(OR, ~OR) ~ df2kYz*(Og, q)kl f(Ok, q)k)" 
m = --1 

(30) 

(31) 

(32) 
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In Eq. (32), Ot {f(OR, q~R)} is just that component of the angular function f(OR, OR) 
which transforms under rotations according to the angular momentum quantum 
number 1. In other words, O~ is a weak projection operator which annihilates 
all of the components of f(OR, ~OR) except that part which corresponds to angular 
momentum I. If we have some other means of finding the effect of such a projection 
operator on f(OR, ~oR), then we need not evaluate the integral (32). 

Looking at (27) and (28), we can see that the angular functions which occur 
in the integrals (14)-(20) are tensor of the form: 

N factors 

f(Ok, q)k)= k,,k~ ... [% k N #, v .... o...  1, 2, 3. (33) 

Thus, in our case, (30) takes on the particular form: 

d3kexp(ik �9 R) A(k) kuk~ "" k,, 
k N 

l = 0, 2, 4 , . . .  N (N even) 

l = l, 3, 5,. . .  N (N odd) #, v,...  a = 1, 2, 3. (34) 

The even values of I enter the sum when N is even, and the odd values enter when 
N is odd because if this were not the case, we would not be able to maintain the 
identity 

RuR~ "" = ~t O~ ( RuR~ ''' R" 

when both sides of the equation are subjected to the inversion operation R = ~ -  R. 
The series in (34) terminates at N for the following reason: The usual theory of 
angular momentum tells us that the maximum value of angular momentum which 
can result from coupling 1 and l' is l +  l'. Since R JR  and R~/R each correspond 
to l =  1, the maximum value of angular momentum can be contained in the 
direct product RuR~/R 2 is I+  I '=  1 + 1 = 2. Similarly, when RuR~/R 2 and R~/R 
are coupled to yield R,R,R~/R 3, the maximum value of angular momentum which 
can be contained in the direct product is 2 + 1 = 3. Proceeding in this way, we 
find that if N is the rank of the tensor function, then 

o~(R.R~R: ~ . R ` )  = 0  for l > N .  

Using a table of spherical harmonics, or alternatively, using LOwdin's projection 
operator methods, we can construct the angular functions 

( R.R~ 2" R~.) 
Ol ~ RN 
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0 [ R u R ~ - -  R.R,, 
~ \ ~ c - )  R ~ 

0 ( R , R ~ _  6u~ 

R u R~ R,, 
R 3 

03 = R a 5R / z = v C a  

R . R , R ,  3 R u 
R 3 5R p = v = c r  

0 # ~ v : ~ r ~ #  

= f f~-  ~ = v C a  

3 R .  

[ R u R.  R~ R~, 

RuR, R .R  ~ R, Ro 
R ~ 

RuR~R,R~ _ 3RuR~. 
R 4 7R  2 

RuRuRvRv R,  Ru + RvRv 

7 R  2 

R 4 7R  2 

! 
+~-  

RuR.RpR u 6RgR u 3 
R 4 7 R  2 + 35- 

[ R.RuR.R~ 

~ 

RvRa 
7 R  2 

3 RuR~ 
7R 2 

R u R~ + R~ R~ 
7R z 

6R.R~ 2 

7 R  a 7 

# = v # a  

2 

21 

0 # r  

0 
oo ~ - j :  ~ ~ : o  

�89 #=V~t7 

p ~ v ~ r  

# = v ~ a  

# r  
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as shown in Table 2. For  example, looking at a table of spherical harmonics, 
we see that 

Y2 o "~ 3 cosZ0 - 1 = 3 ZZ _ 1 
, R 2 �9 

Therefore 

O0 R 2 z1 = 0  and Oo = ~- .  

However, we know that 

O 0 -~- 0 2 - -  ~ -  , 

and therefore it follows that 

02 - R 2 3 "  

Proceeding in this way, we can construct the angular functions of Table 2. 

The Radial Functions of Geller and Harris 

From (34) we can see that the one-electron two-center integrals can be expressed 
in terms of the angular functions of Table 2 and in terms of the radial integrals: 

CX3 

at(R ) = 4hi t ~ dkk2jt(kR) A(k) (35) 
0 

where A (k) represents the radial part of the expressions occurring in Eqs. (14)-(20). 
For example, combining (14), (27), and (34), we have: 

/ RuRvR,, \ 
(Fzv,,2p), = ~ a,(R)O, I- ~ ) (36) 

where z = 1,3 
al(R)=4xil~dkk2jl(kR){(27r)3(~)7/2(4~zik)(ik)(~) 7/2(-4xik)~ 

(k 2 + ~2)a (k~- ~ ~-~ j  (37) 

Radial integrals of this type have been studied by Geller [29, 30] and Harris [25]. 
They introduce the notation: 

2 ~o dkkZ+ 2ijl(kR) (38) 
W~z,~ j" =-- ~ ! (k 2 + ~2), (k 2 + ~2)r 

Thus, using Harris' notation, we can write: 

(F2v,.,2p.,),, :2(4~l ~2)7/2 i ~ i*W~',~-!) Ot (-R~'~ R" ) (39, 
/ = 1 , 3  

The radial integrals W~ti4 can be evaluated directly by contour integration. 
However, this direct method of evaluating WL,~/ is extremely tedious. Harris 
instead evaluates these integrals by a very elegant procedure using recursion 
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relations and using the relation [31]" 

R s 
WJ'I ~-~- 1 ks-z- I(~,R) s+ t ,0 -  2 s s t  

where k . (x )  is a modified spherical Bessel function of order n: 

x 

ko(x  ) = 1__ e_ ~ 
x 

(3 )x k2(x) = ~ -  + ~ -  + e- 

(15 15 6 ~_) 
ka(x  ) = ~ g -  + -x-y + - ~ -  + e -~  

etc.  

(40) 

(4t) 

._S 
a o 

Z{4 ~1 ~2)7~ 3,1 W3,3(R} 

1 2 3 4 

2(4 z t ~2WI-ZtR~ 
s1:'2~ 3,3~ J 

Figs. ! and 2. These figures show the radial functions which are needed for the accurate evaluation 
of oscillator strengths in ~ *  transitions, [see Eqs. (4), (38), and (39)]. The curves were evaluated 
using the Slater exponents given by Clementi and Riamondi [28] for nitrogen, carbon and oxygen 
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The modified spherical Bessel functions k.(x) obey the recursion relations: 

d [k~ 
x" k.+a = ~-x [~;J" (42) 

The radial functions W/.i, j obey the recursion relations: 

((2 _ (2) Wiil,~j, = Wil,~J_ l _ WiilLJl,i. (43) 

/ 2 1 +  f l ~  . 
- -  W..:,~= W.. l+l'j W,/: ~,j+l (44) 

I R ) "' i,i' + ,. ' 

Starting with (40), one can use (43) and (44) to advance the indices of W U and in 
this way one obtains the desired function. Harris also discusses a procedure which 
can be used to evaluate Wit, i4 in the case where (t  and ~2 are almost equal, and (43) 
is no longer computationally feasible. Examples of the radial functions are 
shown in Figs. 1 and 2. 

Tables of One-Electron Two-Center Integrals 

Having discussed both the angular and radial parts of the integrals in 
Eqs. (14)-(20), we are now in a position to evaluate them by a straightforward 
application of Eqs. (34), (3l), (27), and (28). The results, expressed in terms of the 

Table 3. Integrals involving the momentum operator 

(F...). =- ~d~x Z.,(x - Xj,) ~ Z.(x X~) 

R = X j, - -  X j  

(F1~,1~). = --1(4(1~2)5/2 W'I'lz,: RUR 

- (4(,(2) s/2 R. 
-- W2,3 ) R 

- (4r162 {9r W..a,~ 2 2 ~,2 ~,a R. 
(F2s'2s)u 6 3,3 - 3((x + (2) W3,3 -Jr- W3, 3 } R 

(Fl,.2p,),=(2~l) 5/2 (2~2) 7/2 ~ 2;3 l~ R 2 ] 
l = 0 , 2  

(F2p.,ep~)~= 2(4(1~z) 7/2 i ~ ilW31'3 ( ~ )  O l ( ~ )  
/ = 1 , 3  

(F~s,2.)~ 1/3 ~o,~ 

�9 Ol~ R2 ] 
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(a.,& _=.(#~ ;e,,.(~ - x j . ) &  - x ,? .  z.4.~ - L )  

R. 
(Gis,is)u = 2(4~1~2) 5/2 W~,~ 1 ~ -  

2(4(,  ~2) 5/2 ( 5 ( 2  W 1'1 -- 14~l,;Z) ~ 
( a ~ " z 3 "  = ~33 2,, 

2(4~(2)s/z {15ff2~ W~2 - (3~  + 5~ 2) 3,4 - ,,3,4, R VIL1,2 _t_ T,v'l,3t Ru 

e4 - 1) 

(G2,~.x,),=4(2(t)~tz(2(2) s/2 Z i'W~' ( -~  el (RuR*] 

{ - -  (6-')'1 (R~,R,I (G~.z,)~ = 4(2r (2{a)S/a i l - WZ ~ -  

- -  1 i t  Ru 5 ~ o ~  (Gzp,.,2..)a=-12(4~,:2)7/2ti ~ i tW3 t ' 4 ( s z t ' O~(~ )+  ~W3'3 ~ - 
- ~- I=1,3 l 

Table 5. Overlap integrals 

- -  1 5 /2  W o,~. Sis,i,- ~(4~1(2) 2,2 
R, 

(4 (1 G) 5s~ W0,1 _ 14/0,2~ 5:1~2~- (?(~ 2,3 ~,3 J 
, 21/3 

(4 ~1 ~2) s/2 
s ~ . ~ -  ~ 19c~r w.. ~ - 3(c~ +~). w~,, + w221 

(2~1) 5/2 
w#,~ ~ _ w~,~ 2) s2,,2v~ ~ --(3{12 

1~0,2 

angular functions of Table 2 and the radial functions of Harris' Eq. (38), are given 
in Tables 3-8. For  the sake of completeness, we have included all of the two-center 
one-electron integrals which are of interest for the calculation of optical properties 
of molecules. These include matrix elements of the momentum operator, the 

dipole operator, the tensor operator x ,  = ~ ,  the quadrupole moment operator, 
r 

and the angular momemum operator, and overlap integrals. The matrix elements 
were evaluated for Slater-type atomic orbitals up to n = 2. Applications will be 
reported in another paper. 
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0 Table 6. Integrals involving the operator xu ~3x~ 

, q  
(T , . , ) , ,  --- .f d ~ x z , . ( x  - Xs.) (x - x~.),  ~ g -  z , ( x  - xj) 

(Tls, is)uv=-2(4(l(2) s ~ ' 3,2 v l \  R2 ] 
'=0,2  

4 - '  (6_~) ( Rf fRv  ) 
2 5'2 ; I far21/ l : l , (~-)  i, 2 

2 4 - '  
;/S,~Y2ff 2 l i l /  l ( ' ~ )  

l=0,2 
(6-,) (~A) [RuR,] 

_(5(2+3(z) W), 2 a_u:, 2 "lOl 4,3 " ",*,'3 s ~ R 2 ] 

(Tt.,av.)~==4(2(,)mz(2r Z ' vv~:3 u,~--~R3~- ) 
/=1,3 

(T2~,~)~. =7~gF#(2~0 ~" (2G) 7/~ i y, i ~ 
V a '=1,3  

:,~r2 u : t , (~A) ,  (2~)] /R,,R~R.\ 
�9 ) 

(T2p~,2~)~ =2(4r ~ '~-~ R 
, 

(6-I' I I )] 
- 6  Z i 'w& 2 o,t R"R~R,R" 

'=0 ,2 ,4  " 8 4  

Table 7. Integrals involving the quadrupole moment operator 

(Q. . . ) .~  ---.[ d3xz.'(x - X;)  (x - Xj,). (x - Xj)~ z . ( x  - Xj) 

(Qmls)uv=S(4(l~z) 5/~ Z .,,3,3 v , ~ y - ]  
'=0 ,2  

8 212 , , , , :  ,~,, ,(-~) , C-J) R.R~ (Ql"z')"=-~ -(4:1~2) ,=o.zZ ~ t - s z . . 3 , 4 - W a : 4  } 0 1 ( ~ )  
4- -1  

(Q2, ,~ ) .~  = ( 4 ( I G )  5:2 Y~ ' * ~ ' ~  ~'~,~ 
'=0 ,2  

6 - ,  8 - , }  ( R , u g v  I 
- 5(~ + @ w, ',(-'T),,, .-,- w,',~ T )  o, \ - - k T  j 

[ 11 R~ (~2~,2~.)~ = - 4 ( 2 ~ 0  ~/~ (2G) w2 [a.~ w3 '~ --R- 

- 6  ~ il-lwt:~4"2~)'" [ RuR.R,,~] 
,=1,3 

5 '2 7 '2 [ Rv  2 1 1 - 4  (2(0' (2(2) / [6v.~-(S(1Wg'3 1,2 ( Q 2 , , ~ ) ~ o  = - ~ -  , - W4~ ) 

;,-*~,r2 u7,,(~ -t) _ W/(vTt)~ O [ Rj*RvRr ~1 
- 6 Z ' [0,, ",*,,* ,,:4 j ,k--~y~/j 

1=1,3 
r r (:-') 

(Q2v.,2v~)~o= 2(4(,r - 6  E it {bu~W~:,* 2 
L /=0,2 t 

�9 o,t  
6 - I  .., ,,,.t.(~)n [ RuRvR,,RQ ]1 

+36 Z ' ' * , ' *  "qt "~- 7J 
/=0,2,4 
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Table 8. Matrix elements of the angular momentum operator 

0 x 0 

(L, ,s , ,s)~ o = X~(F,,s, , .~)~ - X f (F , . s , ,~ )o  

(L., s ,2 . )~  = X ;  (F.. s,2~), - Xf(F.,s,2..)o 

~- 6 evS2pu, 2pv - -  ~avS2p., 2po 
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